télécharger:Le petit chimiste 100 experiences

Written By hassan lgaz on vendredi 12 octobre 2012 | 03:23






                                         Coordination compounds

Classical coordination compounds feature metals bound to "lone pairs" of electrons residing on the main group atoms of ligands such as H2O, NH3, Cl, and CN. In modern coordination compounds almost all organic and inorganic compounds can be used as ligands. The "metal" usually is a metal from the groups 3-13, as well as the trans-lanthanides and trans-actinides, but from a certain perspective, all chemical compounds can be described as coordination complexes.
The stereochemistry of coordination complexes can be quite rich, as hinted at by Werner's separation of two enantiomers of [Co((OH)2Co(NH3)4)3]6+, an early demonstration that chirality is not inherent to organic compounds. A topical theme within this specialization is supramolecular coordination chemistry.[3]

Main group compounds

Tetrasulfur tetranitride, S4N4, is a main group compound that continues to intrigue chemists
 
These species feature elements from groups 1, 2 and 13-18 (excluding hydrogen) of the periodic table. Due to their often similar reactivity, the elements in group 3 (Sc, Y, and La) and group 12 (Zn, Cd, and Hg) are also generally included.[4]
Main group compounds have been known since the beginnings of chemistry, e.g., elemental sulfur and the distillable white phosphorus. Experiments on oxygen, O2, by Lavoisier and Priestley not only identified an important diatomic gas, but opened the way for describing compounds and reactions according to stoichiometric ratios. The discovery of a practical synthesis of ammonia using iron catalysts by Carl Bosch and Fritz Haber in the early 1900s deeply impacted mankind, demonstrating the significance of inorganic chemical synthesis. Typical main group compounds are SiO2, SnCl4, and N2O. Many main group compounds can also be classed as “organometallic”, as they contain organic groups, e.g., B(CH3)3). Main group compounds also occur in nature, e.g., phosphate in DNA, and therefore may be classed as bioinorganic. Conversely, organic compounds lacking (many) hydrogen ligands can be classed as “inorganic”, such as the fullerenes, buckytubes and binary carbon oxides.

Transition metal compounds

Compounds containing metals from group 4 to 11 are considered transition metal compounds. Compounds with a metal from group 3 or 12 are sometimes also incorporated into this group, but also often classified as main group compounds.
Transition metal compounds show a rich coordination chemistry, varying from tetrahedral for titanium (e.g., TiCl4) to square planar for some nickel complexes to octahedral for coordination complexes of cobalt. A range of transition metals can be found in biologically important compounds, such as iron in hemoglobin.

Organometallic compounds

Organolithium reagents are most often found in polymeric form, such as n-butyllithium shown here
 
Usually, organometallic compounds are considered to contain the M-C-H group.[5] The metal (M) in these species can either be a main group element or a transition metal. Operationally, the definition of an organometallic compound is more relaxed to include also highly lipophilic complexes such as metal carbonyls and even metal alkoxides.
Organometallic compounds are mainly considered a special category because organic ligands are often sensitive to hydrolysis or oxidation, necessitating that organometallic chemistry employs more specialized preparative methods than was traditional in Werner-type complexes. Synthetic methodology, especially the ability to manipulate complexes in solvents of low coordinating power, enabled the exploration of very weakly coordinating ligands such as hydrocarbons, H2, and N2. Because the ligands are petrochemicals in some sense, the area of organometallic chemistry has greatly benefited from its relevance to industry.

Cluster compounds

Decaborane is a powerfully toxic cluster compound of boron
Iron-sulfur clusters are central components of iron-sulfur proteins, essential for human metabolism
 
Clusters can be found in all classes of chemical compounds. According to the commonly accepted definition, a cluster consists minimally of a triangular set of atoms that are directly bonded to each other. But metal-metal bonded dimetallic complexes are highly relevant to the area. Clusters occur in "pure" inorganic systems, organometallic chemistry, main group chemistry, and bioinorganic chemistry. The distinction between very large clusters and bulk solids is increasingly blurred. This interface is the chemical basis of nanoscience or nanotechnology and specifically arise from the study of quantum size effects in cadmium selenide clusters. Thus, large clusters can be described as an array of bound atoms intermediate in character between a molecule and a solid.

Bioinorganic compounds

The octahedral cobalt centre of Vitamin B12
By definition, these compounds occur in nature, but the subfield includes anthropogenic species, such as pollutants (e.g., methylmercury) and drugs (e.g., Cisplatin).[6] The field, which incorporates many aspects of biochemistry, includes many kinds of compounds, e.g., the phosphates in DNA, and also metal complexes containing ligands that range from biological macromolecules, commonly peptides, to ill-defined species such as humic acid, and to water (e.g., coordinated to gadolinium complexes employed for MRI). Traditionally bioinorganic chemistry focuses on electron- and energy-transfer in proteins relevant to respiration. Medicinal inorganic chemistry includes the study of both non-essential and essential elements with applications to diagnosis and therapies.

Solid state compounds

This important area focuses on structure,[7] bonding, and the physical properties of materials. In practice, solid state inorganic chemistry uses techniques such as crystallography to gain an understanding of the properties that result from collective interactions between the subunits of the solid. Included in solid state chemistry are metals and their alloys or intermetallic derivatives. Related fields are condensed matter physics, mineralogy, and materials science.

Theoretical inorganic chemistry

An alternative perspective on the area of inorganic chemistry begins with the Bohr model of the atom and, using the tools and models of theoretical chemistry and computational chemistry, expands into bonding in simple and then more complex molecules. Precise quantum mechanical descriptions for multielectron species, the province of inorganic chemistry, is difficult. This challenge has spawned many semi-quantitative or semi-empirical approaches including molecular orbital theory and ligand field theory, In parallel with these theoretical descriptions, approximate methodologies are employed, including density functional theory.
Exceptions to theories, qualitative and quantitative, are extremely important in the development of the field. For example, CuII2(OAc)4(H2O)2 is almost diamagnetic below room temperature whereas Crystal Field Theory predicts that the molecule would have two unpaired electrons. The disagreement between qualitative theory (paramagnetic) and observation (diamagnetic) led to the development of models for "magnetic coupling." These improved models led to the development of new magnetic materials and new technologies.
http://en.wikipedia.org/wiki/Inorganic_chemistry

Télécharger :Le petit chimiste 100 experiences
http://www.4shared.com/office/9IXIdZlo/Le_petit_chimiste_100_experien.html?

0 commentaires:

Enregistrer un commentaire

Related Posts Plugin for WordPress, Blogger...